Nilai lim_(x→2)⁡ (√(x^2+5)-3)/(x^2-2x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 2} \ \frac{\sqrt{x^2+5}-3}{x^2-2x} = \cdots \)

  1. 0
  2. 1/3
  3. 1/2
  4. 3/4

(UM UGM 2007)

Pembahasan:

\begin{aligned} \lim_{x \to 2} \ \frac{\sqrt{x^2+5}-3}{x^2-2x} &= \lim_{x \to 2} \ \frac{\sqrt{x^2+5}-3}{x^2-2x} \times \frac{\sqrt{x^2+5}+3}{\sqrt{x^2+5}+3} \\[8pt] &= \lim_{x \to 2} \ \frac{(x^2+5)-9}{(x^2-2x)(\sqrt{x^2+5}+3)} \\[8pt] &= \lim_{x \to 2} \ \frac{(x^2-4)}{(x^2-2x)(\sqrt{x^2+5}+3)} \\[8pt] &= \lim_{x \to 2} \ \frac{(x-2)(x+2)}{x(x-2)(\sqrt{x^2+5}+3)} \\[8pt] &= \lim_{x \to 2} \ \frac{(x+2)}{x \ (\sqrt{x^2+5}+3)} = \frac{(2+2)}{2 \ (\sqrt{2^2+5}+3)} \\[8pt] &= \frac{4}{2(\sqrt{9}+3)} = \frac{4}{12} = \frac{1}{3} \end{aligned}

Jawaban B.